

MGnify-BiATA-2021

These are the materials that will be used for the “Analysing metagenomic assemblies using MGnify” workshop, carried out as part of the BiATA (Bioinformatics: from Algorithms to Applications) 2021 conference.

We strongly recommend navigating to the ‘Prerequisites’ sections of each chapter below and completing the download and setup steps before the practical sessions. Depending on your available network it can take some time (1-2 hrs) to download the necessary files.

	Assembling data
	Prerequisites

	Part 1 - Quality control and filtering of the raw sequence files

	Part 2 - Assembly and Co-assembly

	Assembly analysis
	MGnify hands-on exercises

	Viral detection and classification
	Prerequisites

	1. Identification of putative viral sequences

	2. Detection of viral taxonomic markers

	3. Viral taxonomic assignment

	MAG generation
	Prerequisites

	Generating metagenome assembled genomes

Assembling data

	Sequence quality control (quality/adapter trimming, host decontamination)

	Assembly/co-assembly

	Evaluating an assembly

	Submitting primary assemblies to the ENA

Prerequisites

This tutorial requires Bandage which can be installed as per the github instructions for your system https://github.com/rrwick/Bandage#pre-built-binaries

For this tutorial you will need to make a working directory to store
your data in:

mkdir -p ~/BiATA/session1/data
chmod -R 777 ~/BiATA
export DATADIR=~/BiATA/session1/data/session1

In this directory, download the tarball from http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_courses/biata_2021/

cd ~/BiATA/session1/data/
wget -q http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_courses/biata_2021/session1.tgz
tar -xzvf session1.tgz

Now makes sure that you have pulled the docker container

docker pull microbiomeinformatics/biata-qc-assembly:v2021

Finally, start the docker container in the following way:

xhost +
docker run --rm -it -e DISPLAY=$DISPLAY -v $DATADIR:/opt/data -v /tmp/.X11-unix:/tmp/.X11-unix:rw -e DISPLAY=unix$DISPLAY microbiomeinformatics/biata-qc-assembly:v2021

Note that if running Docker windows, WSL must be disabled by selecting “Turn Windows features or or off” when Docker starts.

Part 1 - Quality control and filtering of the raw sequence files

[image: image1] Learning Objectives - in the following exercises you will learn
how to assess the quality of short read sequences, identify the
presence of adapter sequences, and remove both adapters and low quality
sequences. You will also learn how to construct a reference database for
decontamination.

[image: image2] First go to your working area. The data that you downloaded
has been mounted in /opt/data in the docker container.

cd /opt/data
ls

[image: image1] Here you should see the same contents as you had from
downloading and uncompressing the session data. As we write into this
directory, we should be able to see this from inside the container, and
on the filesystem of the computer running this container. We will use
this to our advantage as we go through this practical. Unless stated
otherwise, all of the following commands should be executed in the
terminal running the Docker container.

[image: image2] Generate a directory of the fastqc results

cd /opt/data
mkdir fastqc_results
cd fastqc_results
fastqc ../oral_human_example_1_splitaa.fastq.gz
fastqc ../oral_human_example_2_splitaa.fastq.gz
mv ../*html .
mv ../*zip .

[image: image2] Now on your local computer, go to the browser, and
File -> Open File. Use the file navigator to select the following file

~/BiATA/session1/data/fastqc_results/oral_human_example_1_splitaa_fastqc.html

[image: image4]

Spend some time looking at the ‘Per base sequence quality’.

[image: image1] For each position a BoxWhisker type plot is drawn. The
elements of the plot are as follows:

	The central red line is the median value

	The yellow box represents the inter-quartile range (25-75%)

	The upper and lower whiskers represent the 10% and 90% points

	The blue line represents the mean quality

The y-axis on the graph shows the quality scores. The higher the score
the better the base call. The background of the graph divides the y axis
into very good quality calls (green), calls of reasonable quality
(orange), and calls of poor quality (red). The quality of calls on most
platforms will degrade as the run progresses, so it is common to see
base calls falling into the orange area towards the end of a read.

[image: image3] What does this tell you about your sequence data? Where do the
errors start?

In the pre-processed files we see two warnings, as shown on the left
side of the report. Navigate to the “Per bases sequence content”

[image: image5]

[image: image3] At around 15-19 nucleotides, the DNA composition becomes
very even but at the 5’ end of the sequence there are distinct
differences. Why do you think that is?

[image: image2] Open up the FastQC report corresponding to the reversed
reads.

[image: image3] Are there any significant differences between the forward
and reverse reads?

For more information on the FastQC report, please consult the
‘Documentation’ available from this
site: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

[image: image2] We are currently only looking at two files but often we want
to look at many files. The tool multiqc aggregates the FastQC results
across many samples and creates a single report for easy comparison.
Here we will demonstrate the use of this tool

cd /opt/data
mkdir multiqc_results
multiqc fastqc_results -o multiqc_results

In this case, we provide the folder containing the fastqc results to
multiqc and the -o allows us to set the output directory for this
summarised report.

[image: image2] Now on your local computer, open the summary report from
MultiQC. To do so, go to your browser, and use File -> Open File. Use the
file navigator to select the following file

~/BiATA/session1/data//multiqc_results/multiqc_report.html

[image: image6]

[image: image2] Scroll down through the report. The sequence quality
histograms show the following results from each file as two separate
lines. The ‘Status Checks’ show a matrix of which samples passed check
and which ones have problems.

[image: image3] What fraction of reads are duplicates?

[image: image1] So, far we have looked at the raw files and assessed their
content, but we have not done anything about removing
sequences with low quality scores or adapters. So, lets
start this process. The first step in the process is to make a database
relevant for decontaminating the sample. It is always good to routinely
screen for human DNA (which may come from the host and/or staff
performing the experiment). However, if the sample is say from mouse,
you would want to download the the mouse genome instead.

[image: image2] In the following exercise, we are going to use two “genomes”
already downloaded for you in the decontamination folder. To make this
tutorial quicker and smaller in terms of file sizes, we are going to use
PhiX (a common spike in) and just chromosome 10 from human.

cd /opt/data/decontamination

For the next step we need one file, so we want to merge the two
different fasta files. This is simply done using the command line tool
cat.

cat phix.fasta GRCh38_chr10.fasta > GRCh38_phix.fasta

Now we need to build a bowtie index for them:

bowtie2-build GRCh38_phix.fasta GRCh38_phix.index

[image: image1] It is possible to automatically download a pre-indexed human
genome in Bowtie2 format using the following command (but do not do this
now, as this will take a while to download):

	kneaddata_database –download human_genome bowtie2

[image: image2] Now we are going to use the GRCh38_phix database and clean-up
our raw sequences. kneaddata is a helpful wrapper script for a number
of pre-processing tools, including Bowtie2 to screen out contaminant
sequences, and Trimmomatic to exclude low-quality sequences. We also
have written wrapper scripts to run these tools (see below), but using
kneaddata allows for more flexibility in options.

cd /opt/data/
mkdir clean

We now need to uncompress the fastq files.

gunzip -c oral_human_example_2_splitaa.fastq.gz > oral_human_example_2_splitaa.fastq
gunzip -c oral_human_example_1_splitaa.fastq.gz > oral_human_example_1_splitaa.fastq

kneaddata --remove-intermediate-output -t 2 --input oral_human_example_1_splitaa.fastq --input oral_human_example_2_splitaa.fastq --output /opt/data/clean --reference-db /opt/data/decontamination/GRCh38_phix.index --trimmomatic-options "SLIDINGWINDOW:4:20 MINLEN:50" --bowtie2-options "--very-sensitive --dovetail" --remove-intermediate-output

[image: image1] The options above are:

	* –input, Input FASTQ file. This option is given twice as we have paired-end data.

* –output, Output directory.

* –reference-db, Path to bowtie2 database for decontamination.

* -t, # Number of threads to use (2 in this case).

* –trimmomatic-options, Options for Trimmomatic to use, in quotations
(“SLIDINGWINDOW:4:20 MINLEN:50” in this case). See the Trimmomatic
website for more options.

* –bowtie2-options, Options for bowtie2 to use, in quotations. The
options “–very-sensitive” and “–dovetail” set the alignment parameters
to be very sensitive and sets cases where mates extend past each other
to be concordant (i.e. they will be called as contaminants and be
excluded).

* –remove-intermediate-output, Intermediate files, including large
FASTQs, will be removed.

Kneaddata generates multiple outputs in the “clean” directory,
containing different 4 different files for each read.

[image: image2] Using what you have learned previously, generate a fastqc
report for each of the oral_human_example_1_splitaa_kneaddata_paired
files. Do this within the clean directory.

cd /opt/data/clean
mkdir fastqc_final
<you construct the command>

[image: image2] Also generate a multiqc report and look at the sequence
quality historgrams.

cd /opt/data/clean
mkdir multiqc
<you construct the command>

[image: image2] View the multiQC report as before using your browser. You
should see something like this:

[image: image7]

[image: image3] Open the previous MultiQC report and see have they have
improved?

[image: image3] Did sequences at the 5’ end become uniform? Why might that
be? Is there anything that suggests that adapter sequences were found?

[image: image2] To generate a summary file of how the sequence were
categorised by Kneaddata, run the following command.

cd /opt/data
kneaddata_read_count_table --input /opt/data/clean --output kneaddata_read_counts.txt
less kneaddata_read_counts.txt

[image: image3] What fraction of reads were deemed to be contaminating?

[image: image1] The reads have now be decontaminated any can be uploaded to
ENA, one of the INSDC members. It is beyond the scope of this course to
include a tutorial on how to submit to ENA, but there is additional
information available on how to do this in this Online Training guide
provided by EMBL-EBI

https://www.ebi.ac.uk/training/online/course/ebi-metagenomics-portal-submitting-metagenomics-da/considerations-submitting-metagenomic-data

Part 2 - Assembly and Co-assembly

[image: image1] Learning Objectives - in the following exercises you will
learn how to perform a metagenomic assembly and to start some basic
analysis of the output. Subsequently, we will demonstrate the
application of co-assembly. Note, due to the complexity of metagenomics
assembly, we will only be investigating very simple example datasets as
these often take days of CPU time and 100s of GB of memory. Thus, do not
think that there is an issue with the assemblies.

Once you have quality filtered your sequencing reads (see Part 1 of this
session), you may want to perform de novo assembly in addition to, or
as an alternative to a read-based analyses. The first step is to
assemble your sequences into contigs. There are many tools available for
this, such as MetaVelvet, metaSPAdes, IDBA-UD, MegaHIT. We generally use
metaSPAdes, as in most cases it yields the best contig size statistics
(i.e. more continguous assembly) and has been shown to be able to
capture high degrees of community diversity (Vollmers, et al. PLOS One
2017). However, you should consider the pros and cons of different
assemblers, which not only includes the accuracy of the assembly, but
also their computational overhead. Compare these factors to what you
have available. For example, very diverse samples with a lot of
sequence data uses a lot of memory with SPAdes. In the following
practicals we will demonstrate the use of metaSPAdes on a small sample
and the use of MegaHIT for performing co-assembly.

[image: image2] Using the sequences that you have previously QC-ed, run
metaspades. To make things faster, we are going to turn-off metaspades
own read error correction method, by specifying the command
–only-assembler.

cd /opt/data
mkdir assembly
metaspades.py \
 -t 2 \
 --only-assembler \
 -m 10 \
 -1 /opt/data/clean/oral_human_example_1_splitaa_kneaddata_paired_1.fastq \
 -2 /opt/data/clean/oral_human_example_1_splitaa_kneaddata_paired_2.fastq \
 -o /opt/data/assembly

[image: image1] This takes about 1 hour to complete.

[image: image2] Once this completes, we can investigate the assembly. The
first step is to simply look at the contigs.fasta file.

Now take the first 40 lines of the sequence and perform a blast search
at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi, choose
Nucleotide:Nucleotide from the set of options). Leave all other options
as default on the search page. To select the first 40 lines of sequence
perform the following:

head -41 contigs.fasta

[image: image8]

[image: image3] Which species do you think this sequence may be coming from?
Does this make sense as a human oral bacteria? Are you surprised by this
result at all?

[image: image2] Now let us consider some statistics about the entire assembly

cd /opt/data/assembly
assembly_stats scaffolds.fasta

[image: image1] This will output two simple tables in JSON format, but it is
fairly simple to read. There is a section that corresponds to the
scaffolds in the assembly and a section that corresponds to the contigs.

[image: image3] What is the length of longest and shortest contigs?

[image: image3] What is the N50 of the assembly? Given that are input
sequences were ~150bp long paired-end sequences, what does this tell you
about the assembly?

[image: image1] N50 is a measure to describe the quality of assembled genomes
that are fragmented in contigs of different length. We can apply this
with some caution to metagenomes, where we can use it to crudely assess
the contig length that covers 50% of the total assembly. Essentially
the longer the better, but this only makes sense when thinking about
alike metagenomes. Note, N10 is the minimum contig length to cover 10
percent of the metagenome. N90 is the minimum contig length to cover 90
percent of the metagenome.

[image: image2] In addition to evaluating the contiguity the assemblies, we can
ask what fraction of the diversity in the samples was assembled. We can
answer this question by quantifying the number of reads that map to the
assembly. BWA expects that the read names in the forward and reverse reads
are the same so we will first remove the read identifiers and make sure that
they are ordered correctly.

sed 's/\/1//g' ../clean/oral_human_example_1_splitaa_kneaddata_paired_1.fastq > ../clean/oral_human_example_1_splitaa_kneaddata_paired_noidentifiers_1.fastq
sed 's/\/2//g' ../clean/oral_human_example_1_splitaa_kneaddata_paired_2.fastq > ../clean/oral_human_example_1_splitaa_kneaddata_paired_noidentifiers_2.fastq
repair.sh in=../clean/oral_human_example_1_splitaa_kneaddata_paired_noidentifiers_1.fastq in2=../clean/oral_human_example_1_splitaa_kneaddata_paired_noidentifiers_2.fastq out=../clean/oral_human_example_1_splitaa_kneaddata_paired_noidordered_1.fastq out2=../clean/oral_human_example_1_splitaa_kneaddata_paired_noidordered_2.fastq

[image: image2] To calculate the percent reads mapping to the assembly using the flagstat output generated in the previous step, calculate the number of primary alignments (mapped - secondary - supplementary). Then divide the number of primary alignments by the sum of forward and reverse reads to get the fraction of reads mapped.

bwa index scaffolds.fasta
bwa mem -t 2 scaffolds.fasta ../clean/oral_human_example_1_splitaa_kneaddata_paired_noidordered_1.fastq ../clean/oral_human_example_1_splitaa_kneaddata_paired_noidordered_2.fastq | samtools view -bS - | samtools sort -@ 2 -o oral_human_example_1_splitaa.sam -
samtools flagstat oral_human_example_1_splitaa.sam > oral_human_example_1_splitaa_flagstat.txt

[image: image2] To get the total number of reads in the forward read, run the command below and divide by 4. Repeat for the reverse read.

wc -l ../clean/oral_human_example_1_splitaa_kneaddata_paired_noidordered_1.fastq
wc -l ../clean/oral_human_example_1_splitaa_kneaddata_paired_noidordered_2.fastq

[image: image3] What percent of the reads were incorporated into the assembly?
What factors can affect the percent of reads mapping to the assembly?

[image: image2] Bandage (a Bioinformatics Application for Navigating De novo
Assembly Graphs Easily), is a program that creates interactive
visualisations of assembly graphs. They can be useful for finding
sections of the graph, such as rRNA, or to try to find parts of a
genome. Note, you can install Bandage on your local system - see the prerequisites section. With
Bandage, you can zoom and pan around the graph and search for sequences,
plus much more. The following guide allows you to look at the assembly
graph. Normally, I would recommend looking at the ‘
assembly_graph.fastg, but our assembly is quite fragmented, so we will
load up the assembly_graph_after_simplification.gfa.

[image: image2] Open Bandage

In the the Bandage GUI perform the following

Select File->Load graph

Navigate to ~/BiATA/session1/data/session1/assembly and select on assembly_graph_after_simplification.gfa

Once loaded, you need to draw the graph. To do so, under the “Graph
drawing” panel on the left side perform the following:

Set Scope to ‘Entire graph’

The click on Draw graph

[image: image2] Use the sliders in the main panel to move around and look at
each distinct part of the assembly graph.

[image: image3] Can you find any large, complex parts of the graph? If so,
what do they look like.

[image: image2] In this particular sample, we believe that strains related to
the species Rothia dentocariosa, a Gram-positive, round- to rod-shaped
bacteria that is part of the normal community of microbes residing in
the mouth and respiratory tract, should be present in our sample. While
this is a tiny dataset, lets try to see if there is evidence for this
genome. To do so, we will search the R. dentocariosa genome against
the assembly graph.

To do so, go to the “BLAST” panel on the left side of the GUI.

Step 1 - Select Create/view BLAST search, this will open a new window

Step 2 - select build Blast database

Step 3 - Load from FASTA file -> navigate to the genome folder /opt/data/genome and select GCA_000164695.fasta

Step 4 - modify the blast filters to 95% identity

Step 6 - run blast

Step 7 - close this window

To visualise just these hits, go back to “Graph drawing” panel.

Set Scope to ‘Around BLAST hits’

Set Distance 2

The click on Draw graph

You should then see something like this:

[image: image9]

[image: image1] In the following steps of this exercise, we will look at
performing co-assembly of multiple datasets. Due to computational
limitations, we can only look a example datasets. However, the
principles are the same. We have also pre-calculated some assemblies for
you. In the co-assembly directory, there are already 2 assemblies. We
have a single paired-end assembly.

megahit -1 clean_other/oral_human_example_1_splitac_kneaddata_paired_1.fastq -2 clean_other/oral_human_example_1_splitac_kneaddata_paired_1.fastq -o coassembly/assembly1 -t 2 --k-list 23,51,77

[image: image2] Now run the assembly_stats on the contigs for this assembly.

cd /opt/data
assembly_stats coassembly/assembly1/final.contigs.fa

[image: image3] How do these differ to the ones you generated previously? What may account for these differences?

[image: image1] We have also generated the first coassembly using MegaHIT.
This was produced using the following command. To specify the files, we
put all of the forward file as a comma separated list, and all of the
reversed as a comma separated list, which should be ordered that same in
both, such that the mate pairs match up.

cd /opt/data
megahit -1 clean_other/oral_human_example_1_splitac_kneaddata_paired_1.fastq,clean_other/oral_human_example_1_splitab_kneaddata_paired_1.fastq -2 clean_other/oral_human_example_1_splitac_kneaddata_paired_1.fastq,clean_other/oral_human_example_1_splitab_kneaddata_paired_2.fastq -o coassembly/assembly2 -t 2 --k-list 23,51,77

[image: image2] Now perform another co-assembly:

megahit -1 clean_other/oral_human_example_1_splitab_kneaddata_paired_1.fastq,clean_other/oral_human_example_1_splitac_kneaddata_paired_1.fastq,clean/oral_human_example_1_splitaa_kneaddata_paired_1.fastq -2 clean_other/oral_human_example_1_splitab_kneaddata_paired_2.fastq,clean_other/oral_human_example_1_splitac_kneaddata_paired_2.fastq,clean/oral_human_example_1_splitaa_kneaddata_paired_2.fastq -o coassembly/assembly3 -t 2 --k-list 23,51,77

[image: image1] This takes about 20-30 minutes. Also, if you are using a
laptop, make sure that it does not go into standby mode.

[image: image2] You should now have three different assemblies, two provide
and one generated by yourselves. Now let us compare the assemblies.

cd /opt/data
assembly_stats coassembly/assembly1/final.contigs.fa
assembly_stats coassembly/assembly2/final.contigs.fa
assembly_stats coassembly/assembly3/final.contigs.fa

[image: image1] We only have contigs.fa from MegaHIT, so the contigs and
scaffold sections are the same.

[image: image3] Has the assembly improved? If so how?

Assembly analysis

In the presentation we will cover:

	Overview of MGnify annotation pipeline

	Taxonomic assignment

	Functional characterisation

	Pathways/systems

	Using the contig viewer

MGnify hands-on exercises

For this session we will look at some of the data and analyses that are available from MGnify. We will navigate the resource, try out different ways to search for interesting samples/studies, and then investigate the analysis results that are available for assemblies.

Browsing MGnify

From the MGnify front page (https://www.ebi.ac.uk/metagenomics/) you can see various options to browse the data. There are quick links to the various data-types (e.g. amplicon, assembly, metagenomes, etc) we support, as well as a subset of the biomes that the data covers.

[image: action] Click on the “wastewater” biome icon.

[image: question] How many studies does MGnify hold that relate to wastewater?

[image: question] How many samples does that relate to?

[image: action] From the sample page, filter the rows with accession ERS1215575, and take a look at the metadata available.

[image: question] Do you know the exact location of where the sample was taken?

[image: question] What are the lat/long co-ordinates?

[image: question] Follow the link to the BioSamples record, can you find any more information about the location of the sample?

[image: action] From the tabs in the header bar, select Text search, and then select Samples below the search box. There are a number of metadata fields available to allow you to filter for a sample of interest to you. Not all are relevant to all samples.
Within the hierarchy of biomes, navigate to environmental>aquatic>lentic. You should see 92 samples. Now select the depth filter.

[image: question] How many lentic samples have depth data associated with them?

[image: question] Using the sliders, can you identify a sample of a lentic water system from a depth between 47-49m?

MGnify assembly analysis

Now we will look at some assembly data that has been analysed by MGnify.

[image: action] Search for MGYS00003598, and go to this study page. This is a large study where MGnify have assembled the raw reads from an existing public study. The list of assemblies is shown at the bottom of the study page.

[image: question] How many analyses are included in this study?

[image: action] Click on the 2nd analysis link in the list MGYA00510849. You could alternatively search for this accession using the text search options. Have a look at the information within the Quality control tab.

[image: question] How many contigs are included in this analysis?

[image: question] What length is the longest contig in this dataset?

[image: action] Click on the Taxonomic analysis tab and examine the phylum composition in the graphs and the krona plot.

[image: question] What proportion of the total LSU rRNA predictions are eukaryotic?

[image: action] Try switching between the other available graph views.

[image: question] Which phylum contains the highest proportion of LSU rRNA predictions?

[image: action] Click on the Functional analysis tab. The top part of this page shows a sequence feature summary, showing the number of contigs with predicted coding sequences (pCDS), the number of pCDS with InterPro matches, etc.

[image: question] How many predicted coding sequences (pCDS) are in the assembly?

[image: question] How many pCDS have InterProScan hits?

[image: action] Scroll down the page to the InterPro match summary section.

[image: question] How many different InterPro entries are matched by the pCDS?

[image: question] Why is this number different to the number of pCDS that have InterProScan hits?

[image: action] Click on the GO Terms sub-tab. This shows a summary of the most common GO terms annotated to the pCDS as both bar charts, and pie charts.

[image: question] What are the top 3 biological process terms predicted for the pCDS from this assembly?

[image: action] Have a look at the information in the Pfam and KO (KEGG orthologue) sub-tabs.

[image: action] Click on the Pathways/Systems tab. Have a look at the data reported in the 3 sub-tabs: KEGG Module, Genome Properties, and antiSMASH.

[image: question] How many KEGG modules are reported for this assembly?

[image: question] How many of these are 100% complete (i.e. all of the constituent KOs are found)?

[image: question] How many Genome Properties of the category DNA handling, are found within this assembly?

[image: question] What is the most common class of biosynthetic gene cluster found in this assembly?

[image: question] How many non-ribosomal peptide synthetase gene clusters are identified by antiSMASH in this assembly?

[image: action] Click on the Contig Viewer tab. Load the data for the 4th contig in the list by clicking on the contig name (ERZ501066.4-NODE-4-length-276957-cov-33.799655). This contig will now be loaded into the viewer.

[image: question] How long is this contig?

[image: question] The longest pCDS in the contig appears to start at 202339. What protein is coded for?

[image: question] Looking at the antiSMASH annotations, where within the contig do any transport-related genes fall?

[image: action] Zoom into that region to see the predicted regions in more detail. Have a look at the information about the various transport-related genes.

[image: question] What region of the contig is predicted to code for a major facilitator transporter?

[image: info] There are lots of different visualisation options available within the contig viewer. Take some time now to investigate the various options, and play about with it by looking at a few different contigs and the anotations they contain.

Viral detection and classification

Prerequisites

IMPORTANT: It is strongly recommended that you complete section 1.1 below (setting up the computing environment) prior to the practical session. Depending on your available network it can take some time (1-2 hrs) to download the necessary files.

[image: image3] 1.1. To run this tutorial first we need to set up our computing environment in order to execute the commands as listed here. First, download and the virify_tutorial.tar.gz file containing all the data you will need using any of the following options:

wget http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_courses/biata_2021/virify_tutorial.tar.gz
or
rsync -av --partial --progress rsync://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_courses/biata_2021/virify_tutorial.tar.gz .

Once downloaded, extract the files from the tarball:

tar -xzvf virify_tutorial.tar.gz

Now change into the virify_tutorial directory and setup the environment by running the following commands in your current terminal session:

cd virify_tutorial
docker load --input docker/virify.tar
docker run --rm -it -v $(pwd)/data:/opt/data virify
mkdir obs_results

All commands detailed below will be run from within this current working directory.
Note: if there are any issues in running this tutorial, there is a separate directory exp_results/ with pre-computed results.

1. Identification of putative viral sequences

[image: image1] In order to retrieve putative viral sequences from a set of metagenomic contigs we are going to use two different tools designed for this purpose, each of which employs a different strategy for viral sequence detection: VirFinder and VirSorter. VirFinder uses a prediction model based on kmer profiles trained using a reference database of viral and prokaryotic sequences. In contrast, VirSorter mainly relies on the comparison of predicted proteins with a comprehensive database of viral proteins and profile HMMs. The VIRify pipeline uses both tools as they provide complementary results:

	VirFinder performs better than VirSorter for short contigs (<3kb) and includes a prediction model suitable for detecting both eukaryotic and prokaryotic viruses (phages).

	In addition to reporting the presence of phage contigs, VirSorter detects and reports the presence of prophage sequences (phages integrated in contigs containing their prokaryotic hosts).

[image: image3] 1.2 In the current working directory you will find the metagenomic assembly we will be working with (ERR575691_host_filtered.fasta). We will now filter the contigs listed in this file to keep only those that are ≥500 bp, by using the custom python script filter_contigs_len.py as follows:

filter_contigs_len.py -f ERR575691_host_filtered.fasta -l 0.5 -o obs_results/ERR575691_host_filtered_filt500bp.fasta

[image: image3] 1.3. The output from this command is a file named ERR575691_host_filtered_filt500bp.fasta which is located in the obs_results diretory. Our dataset is now ready to be processed for the detection of putative viral sequences. We will first analyse it with VirFinder using a custom R script:

VirFinder_analysis_Euk.R -f obs_results/ERR575691_host_filtered_filt500bp.fasta -o obs_results

[image: image3] 1.4. Following the execution of the R script you will see a tabular file (obs_results/ERR575691_host_filtered_filt500bp_VirFinder_table-all.tab) that collates the results obtained for each contig from the processed FASTA file. The next step will be to analyse the metagenomic assembly using VirSorter. To do this run:

wrapper_phage_contigs_sorter_iPlant.pl -f obs_results/ERR575691_host_filtered_filt500bp.fasta --db 2 --wdir obs_results/virsorter_output --virome --data-dir /opt/data/databases/virsorter-data

[image: image1] VirSorter classifies its predictions into different confidence categories:

	Category 1: “most confident” predictions

	Category 2: “likely” predictions

	Category 3: “possible” predictions

	Categories 4-6: predicted prophages

[image: image3] 1.5. While VirSorter is running, we have prepared an R script so you can inspect the VirFinder results in the meantime using ggplot2. Open RStudio and load the Analyse_VirFinder.R script located in the /virify_tutorial/data/scripts/ directory. Run the script (press Source on the top right corner) to generate the plot. (If you don’t have RStudio, or don’t care to run this you can just look at the resulting plot in the image below)

[image: image2]

[image: image1] As you can see there is a relationship between the p-value and the score. A higher score or lower p-value indicates a higher likelihood of the sequence being a viral sequence. You will also notice that the results correlate with the contig length. The curves are slightly different depending on whether the contigs are > or < than 3kb. This is because VirFinder uses different machine learning models at these different levels of length.

[image: image3] 1.6. Once VirSorter finishes running, we then generate the corresponding viral sequence FASTA files using a custom python script (parse_viral_pred.py) as follows:

parse_viral_pred.py -a obs_results/ERR575691_host_filtered_filt500bp.fasta -f obs_results/ERR575691_host_filtered_filt500bp_VirFinder_table-all.tab -s obs_results/virsorter_output -o obs_results

Following the execution of this command, FASTA files (*.fna) will be generated for each one of the VIRify categories mentioned above containing the corresponding putative viral sequences.

The VIRify pipeline takes the output from VirFinder and VirSorter, reporting three prediction categories:

	High confidence: VirSorter phage predictions from categories 1 and 2.

	Low confidence:

	Contigs that VirFinder reported with p-value < 0.05 and score ≥ 0.9.

	Contigs that VirFinder reported with p-value < 0.05 and score ≥ 0.7, but that are also reported by VirSorter in category 3.

	Prophages: VirSorter prophage predictions categories 4 and 5.

2. Detection of viral taxonomic markers

[image: image1] Once we have retrieved the putative viral sequences from the metagenomic assembly, the following step will be to analyse the proteins encoded in them in order to identify any viral taxonomic markers. To carry out this identification, we will employ a database of profile Hidden Markov Models (HMMs) built from proteins encoded in viral reference genomes. These profile HMMs were selected as viral taxonomic markers following a comprehensive random forest-based analysis carried out previously.

[image: image3] 2.1. The VIRify pipeline uses prodigal for the detection of protein coding sequences (CDSs) and hmmscan for the alignment of the encoded proteins to each of the profile HMMs stored in the aforementioned database. We will use the custom script Generate_vphmm_hmmer_matrix.py to conduct these steps for each one of the FASTA files sequentially in a “for loop”. In your terminal session, execute the following command:

for file in $(find obs_results/ -name '*.fna' -type f | grep -i 'putative'); do Generate_vphmm_hmmer_matrix.py -f ${file} -o ${file%/*}; done

Once the command execution finishes two new files will be stored for each category of viral predictions. The file with the suffix CDS.faa lists the proteins encoded in the CDSs reported by prodigal, whereas the file with the suffix hmmer_ViPhOG.tbl contains all significant alignments between the encoded proteins and the profile HMMs, on a per-domain-hit basis.

[image: image3] 2.2. The following command is used to parse the hmmer output and generate a new tabular file that lists alignment results in a per-query basis, which include the alignment ratio and absolute value of total E-value for each protein-profile HMM pair.

for file in $(find obs_results/ -name '*ViPhOG.tbl' -type f); do Ratio_Evalue_table.py -i ${file} -o ${file%/*}; done

3. Viral taxonomic assignment

[image: image1] The final output of the VIRify pipeline includes a series of gene maps generated for each putative viral sequence and a tabular file that reports the taxonomic lineage assigned to each viral contig. The gene maps provide a convenient way of visualizing the taxonomic annotations obtained for each putative viral contig and compare the annotation results with the corresponding assigned taxonomic lineage. Taxonomic lineage assignment is carried out from the highest taxonomic rank (genus) to the lowest (order), taking all the corresponding annotations and assessing whether the most commonly reported one passes a pre-defined assignment threshold.

[image: image3] 3.1. First, we are going to generate a tabular file that lists the taxonomic annotation results obtained for each protein from the putative viral contigs. We will generate this file for the putative viral sequences in each prediction category. Run the following:

for file in $(find obs_results/ -name '*CDS.faa' -type f); do viral_contigs_annotation.py -p ${file} -t ${file%CDS.faa}hmmer_ViPhOG_informative.tsv -o ${file%/*}; done

[image: image3] 3.2. Next, we will take the tabular annotation files generated and use them to create the viral contig gene maps. To achieve this, run the following:

for file in $(find obs_results/ -name '*annot.tsv' -type f); do Make_viral_contig_map.R -t ${file} -o ${file%/*}; done

[image: image3] 3.3. Finally, we will use the tabular annotation files again to carry out the taxonomic lineage assignment for each putative viral contig. Run the following command:

for file in $(find obs_results/ -name '*annot.tsv' -type f); do contig_taxonomic_assign.py -i ${file} -o ${file%/*}; done

Final output results are stored in the obs_results/ directory.

The gene maps are stored per contig in individual PDF files (suffix names of the contigs indicate their level of confidence and category class obtained from VirSorter). Each protein coding sequence in the contig maps (PDFs) is coloured and labeled as high confidence (E-value < 0.1), low confidence (E-value > 0.1) or no hit, based on the matches to the HMM profiles. Do not confuse this with the high confidence or low confidence prediction of VIRify for the whole contig.

Taxonomic annotation results per classification category are stored as text in the *_tax_assign.tsv files.

Let’s inspect the results. Do:

cat obs_results/*tax_assign.tsv

You should see a list of 9 contigs detected as viral and their taxonomic annotation in separate columns (partitioned by taxonomic rank). However, some do not have an annotation (e.g. NODE_4… and NODE_5…).

Open the gene map PDF files of the corresponding contigs to understand why some contigs were not assigned to a taxonomic lineage. You will see that for these cases, either there were not enough genes matching the HMMs, or there was disagreement in their assignment.

[image: image5]

MAG generation

	Generation of metagenome assembled genomes (MAGs) from assemblies

	Assessment of quality (MIMAGs)

	Taxonomic assignment

Prerequisites

For this tutorial you will need to make a working directory to store
your data in.

mkdir -p ~/BiATA/session4/data
chmod -R 777 ~/BiATA

(If your path to the data folder looks different from the one in this example, please make sure there are no spaces
in any of your directory names.)

In this directory, download the tarball from http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_courses/biata_2021/

cd ~/BiATA/session4/data
wget -q http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_courses/biata_2021/session4.tgz
tar xzvf session4.tgz

Now make sure that you have pulled the docker container:

docker pull microbiomeinformatics/biata-binning

Finally, start the docker container in the following way:

export DATADIR=~/BiATA/session4/data/session4
docker run --rm -it -e DISPLAY=$DISPLAY -v $DATADIR:/opt/data -v /tmp/.X11-unix:/tmp/.X11-unix:rw -e DISPLAY=docker.for.mac.localhost:0 microbiomeinformatics/biata-binning

Generating metagenome assembled genomes

[image: image1] Learning Objectives - in the following exercises you will
learn how to bin an assembly, assess the quality of this assembly with
CheckM and then visualise a placement of these genomes within a
reference tree.

[image: image1] As with the assembly process, there are many software tools available for
binning metagenome assemblies. Examples include, but are not limited to:

MaxBin: https://sourceforge.net/projects/maxbin/

CONCOCT: https://github.com/BinPro/CONCOCT

COCACOLA: https://github.com/younglululu/COCACOLA

MetaBAT: https://bitbucket.org/berkeleylab/metabat

There is no clear winner between these tools, so the best is to
experiment and compare a few different ones to determine which works
best for your dataset. For this exercise we will be using MetaBAT
(specifically, MetaBAT2). The way in which MetaBAT bins contigs together
is summarised in Figure 1.

[image: image2]

Figure 1. MetaBAT workflow (Kang, et al. PeerJ 2015).

[image: image1] Prior to running MetaBAT, we need to generate coverage
statistics by mapping reads to the contigs. To do this, we can use bwa
(http://bio-bwa.sourceforge.net/) and then the samtools software
(http://www.htslib.org [http://www.htslib.org/]) to reformat the
output. Again, this can take some time, so we have run it in advance. To
repeat the process, you would run the following commands:

cd /opt/data/assemblies

index the contigs file that was produced by metaSPAdes:
bwa index contigs.fasta

map the original reads to the contigs:
bwa mem contigs.fasta ERR011322_1.fastq ERR011322_2.fastq > input.fastq.sam

reformat the file with samtools:
samtools view -Sbu input.fastq.sam > junk
samtools sort junk input.fastq.sam

We should now have the files we need for the rest of the process – the
assemblies themselves (contigs.fasta) and a file from which we can
generate the coverage stats (input.fastq.sam.bam).

Running MetaBAT

The /opt/data/assemblies directory inside the docker container should
contain the following two files needed to run MetaBAT: contigs.fasta and input.fastq.sam.bam.

[image: image3] Create a subdirectory where files will be output:

cd /opt/data/assemblies/
mkdir contigs.fasta.metabat-bins2000

[image: image3] Run the following command to produce a
contigs.fasta.depth.txt file, summarising the output depth for use with
MetaBAT:

cd /opt/data/assemblies/
jgi_summarize_bam_contig_depths --outputDepth contigs.fasta.depth.txt input.fastq.sam.bam

now run MetaBAT

cd /opt/data/assemblies/
metabat2 --inFile contigs.fasta --outFile contigs.fasta.metabat-bins2000/bin --abdFile contigs.fasta.depth.txt --minContig 2000

[image: image3] Once the binning process is complete, each bin will be
grouped into a multi-fasta file with a name structure of
bin.[0-9].fa.

[image: image3] Move to the output directory and look at the output of the binning process.

cd /opt/data/assemblies/contigs.fasta.metabat-bins2000/

[image: image4] How many bins did the process produce?

[image: image4] How many sequences are in each bin?

[image: image4] What does each bin represent?

Obviously, not all bins will have the same level of accuracy since some
might represent a very small fraction of a potential species present in
your dataset. To further assess the quality of the bins we will use
CheckM (https://github.com/Ecogenomics/CheckM/wiki).

Running CheckM

[image: image1] CheckM has its own reference database of single-copy
marker genes. Essentially, based on the proportion of these markers
detected in the bin, the number of copies of each and how different they
are, it will determine the level of completeness, contamination
and strain heterogeneity of the predicted genome.

[image: image3] Before we start, we need to configure checkM.

cd /opt/data
mkdir checkm_data
mv checkm_data_2015_01_16.tar.gz checkm_data
cd checkm_data
tar zxvf checkm_data_2015_01_16.tar.gz
checkm data setRoot /opt/data/checkm_data

This program has some handy tools not only for quality control, but also
for taxonomic classification, assessing coverage, building a
phylogenetic tree, etc. The most relevant ones for this exercise are
wrapped into the lineage_wf workflow.

Move back to the top level directory

cd /opt/data/assemblies/

Now run CheckM with the following command:

checkm lineage_wf -x fa contigs.fasta.metabat-bins2000 checkm_output --tab_table -f MAGs_checkm.tab --reduced_tree -t 4

Due to memory constraints (< 40 GB), we have added the option
–reduced_tree to build the phylogeny with a reduced number of
reference genomes. In case the process still runs out of memory
and is killed, the result files have been provided in /opt/data/checkm_answers.

Once the lineage_wf analysis is done, the reference tree can be
found in checkm_output/storage/tree/concatenated.tre. Additionally,
you will have the taxonomic assignment and quality assessment of each
bin in the file MAGs_checkm.tab with the corresponding level of
completeness, contamination and strain heterogeneity (Fig.
2). A quick way to infer the overall quality of the bin is to calculate
the level of (completeness - 5*contamination). You should be aiming for an overall score of at
least 70-80%.

 [image: image5]

Figure 2. Example output of CheckM

Before we can visualize and plot the tree we will need to convert the
reference ID names used by CheckM to taxon names. We have already
prepared a mapping file for renaming the tree (rename_list.tab). We
can then do this easily with the newick utilities
(http://cegg.unige.ch/newick_utils).

To do this, run the following command:

nw_rename checkm_output/storage/tree/concatenated.tre rename_list.tab > renamed.tree

Visualising the phylogenetic tree

We will now plot and visualize the tree we have produced. A quick and
user- friendly way to do this is to use the web-based interactive Tree
of Life (iTOL): http://itol.embl.de/index.shtml

iTOL only takes in newick formatted trees, so we need to quickly
reformat the tree with FigTree
(http://tree.bio.ed.ac.uk/software/figtree/).

You should be able to run FigTree as follows:

figtree

[image: image3] Open the renamed.tree file with FigTree and then
select from the toolbar File -> Export Trees. In the Tree file
format select Newick and export the file as renamed.nwk (choose a name you will recognise if you plan to use the shared account described below).

[image: image3] To use iTOL you will need a user account. For the
purpose of this tutorial we have already created one for you with an
example tree. The login is as follows:

User: EBI_training

Password: EBI_training

After you login, just click on My Trees in the toolbar at the top
and select

IBD_checkm_tree.nwk from the Imported trees workspace.

Alternatively, if you want to create your own account and plot the tree
yourself

follow these steps:

1) After you have created and logged in to your account go to My Trees

2) From there select Upload tree files and upload the tree
you exported from FigTree

3) Once uploaded, click the tree name to visualize the plot

4) To colour the clades and the outside circle according to the
phylum of each strain, drag and drop the files iTOL_clades.txt and
iTOL_ocircles.txt into the browser window

Once that is done, all the reference genomes used by CheckM will be
coloured according to their phylum name, while all the other ones left
blank correspond to the target genomes we placed in the tree.
Highlighting each tip of the phylogeny will let you see the whole
taxon/sample name. Feel free to play around with the plot.

[image: image4] Does the CheckM taxonomic classification make sense? What about the unknowns? What is their most likely taxon?

Index

Welcome to Biata-2021’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

Binning

Info

Quality control

Viral pipeline

 _images/contig_map.png

_images/fastqc1.png
988 0 ummmrmenrum x |4
L Y ————) 0

‘RFastQC Report 2 s

‘Summary

[

[——
[——
[T—
[IT———

Qo somunnce 6 ot pae—— e

3
[e—

(7T —— o

@onrmemsons | OPor base sequence quaity

[yo—r— [———

Proucnd by Faa vrina119)

_images/blast.png
._.:Z::L:
::::::.:
_::......1:;.:“
ififarnanrrigsasued

ot

L

[—

_images/checkm.png
Bin Id Marker lineage # genomes # markers # marker sets

bin.1 f__Lachnospiraceae (UID1286) 57
bin.2 k__Bacteria (UID203) 5449
bin.3 o__ Clostridiales (UID1212) 172
bin.4 o__ Clostridiales (UID1212) 172
bin.5 k__Bacteria (UID2565) 2921

420
104
263
263
152

207
58
149
149
93

0 1 2 3
27 383 10 0
5 22 28 44
9253 1 0
65197 1 0
13139 0 O

4 5+ Completeness Contamination Strain heterogeneity

00 95.94 2.42 50
50 97.39 163.71 42.63
00 96.64 0.67 100
00 75.03 0.67 0
00 88.17 0 0

_images/multiqc1.png
Ao 31 5 s fomborkomscs s sy s roa e |
oper
J S S— 2
A
pr—_. T —
General Statistics. -
Aoy | Mo | A | ot H
praew. w0 s we .
e ES
oI - 2 e
FastQC
SO S———.
‘Sequence Counts o~

e o st e .

FasC: Sequence Counts

_images/multiqc2.png

_images/fastqc2.png
‘@FastQC Report [OTSR—,]
‘Summary Opor base sequence content

° . [

[. =
[J—— =
[FIoTeme— .

P is—— .

[Je———

o .

[e— -

(7T ——

m—-—x

Proucnd by Faa vrina119)
_—

_images/info.png

_images/question.png

_images/virfinder.png
0.75

[}
=050
[}
B3
(=8
0.25 .
0.00 : -
0.00 0.25 0.50 0.75 1.00

score

Length @ <3kb @ >=10kb @ 3-5kb @ 5-10kb

_images/action.png

_images/bandage.png
Coonomnen
Tl e
-

[ARRRNN
(RRRRNRRNARRRRAE!

o o
P
P

o
P

0w i -

_images/binning.png
Preprocessing

u
‘Samples from multiple sites or times

a
‘Metagenome libraries

Plnitial de-novo assembly
using the combined library

/ _\‘ n:-unr

TetraNucleotides Frequency Abundance Calculate TNF for each contig

I)
Za3EEET0 calculate Abundance per library
O omnnan B0 for each contig
ey

a
— - — ‘Calculate the pairwise distance

‘matrix using pre-trained
probabilistic models

Forming genome bins iteratively

nav.xhtml

 Table of Contents

 		
 MGnify-BiATA-2021

 		
 Assembling data

 		
 Prerequisites

 		
 Part 1 - Quality control and filtering of the raw sequence files

 		
 Part 2 - Assembly and Co-assembly

 		
 Assembly analysis

 		
 MGnify hands-on exercises

 		
 Browsing MGnify

 		
 MGnify assembly analysis

 		
 Viral detection and classification

 		
 Prerequisites

 		
 1. Identification of putative viral sequences

 		
 2. Detection of viral taxonomic markers

 		
 3. Viral taxonomic assignment

 		
 MAG generation

 		
 Prerequisites

 		
 Generating metagenome assembled genomes

_static/minus.png

_static/plus.png

_static/file.png

